Lp-Fourier multipliers for the Dunkl operator on the real line
نویسندگان
چکیده
منابع مشابه
OPERATOR-VALUED Lq → Lp FOURIER MULTIPLIERS
Fourier multiplier theorems provides one of the most important tools in the study of partial differential equations and embedding theorems. They are very often used to establish maximal regularity of elliptic and parabolic differential operator equations. Operator–valued multiplier theorems in Banach–valued function spaces have been discussed extensively in [1, 2, 3, 5, 7, 8, 9, 10, 11, 12 ]. B...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملDunkl Translation and Uncentered Maximal Operator on the Real Line
On the real line, the Dunkl operators are differential-difference operators introduced in 1989 by Dunkl [1] and are denoted by Λα, where α is a real parameter > −1/2. These operators are associated with the reflection group Z2 on R. The Dunkl kernel Eα is used to define the Dunkl transform α which was introduced by Dunkl in [2]. Rösler in [3] shows that the Dunkl kernels verify a product formul...
متن کاملan lp-lq-version of morgan's theorem for the generalized fourier transform associated with a dunkl type operator
the aim of this paper is to prove new quantitative uncertainty principle for the generalized fourier transform connected with a dunkl type operator on the real line. more precisely we prove an lp-lq-version of morgan's theorem.
متن کاملCharacterization of Besov Spaces for the Dunkl Operator on the Real Line
In this paper, we define subspaces of L by differences using the Dunkl translation operators that we call Besov-Dunkl spaces. We provide characterization of these spaces by the Dunkl convolution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2004
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2003.11.009